DrugLib.com — Drug Information Portal

Rx drug information, pharmaceutical research, clinical trials, news, and more

Ecotrin (Aspirin Enteric Coated) - Description and Clinical Pharmacology



Ecotrin enteric coated aspirin (acetylsalicylic acid) tablets available in 81mg, 325mg and 500 mg tablets for oral administration. The 325 mg and 500 mg tablets contain the following inactive ingredients: Carnuba Wax, Colloidal Silicon Dioxide, FD&C Yellow No. 6, Hypromellose, Methacrylic Acid Copolymer, Microcrystalline Cellulose, Pregelatinized Starch, Propylene Glycol, Simethicone, Sodium Starch Glycolate, Stearic Acid, Talc, Titanium Dioxide, and Triethyl Citrate. The 81 mg tablets contain Carnuba Wax, Corn Starch, D&C Yellow No. 10, FD&C Yellow No. 6, Hypromellose, Methacrylic Acid Copolymer, Microcrystalline Cellulose, Propylene Glycol, Simethicone, Stearic Acid, Talc and Triethyl Citrate.

Aspirin is an odorless white, needle-like crystalline or powdery substance. When exposed to moisture, aspirin hydrolyzes into salicylic and acetic acids, and gives off a vinegary-odor. It is highly lipid soluble and slightly soluble in water.


Mechanism of Action: Aspirin is a more potent inhibitor of both prostaglandin synthesis and platelet aggregation than other salicylic acid derivatives. The differences in activity between aspirin and salicylic acid are thought to be due to the acetyl group on the aspirin molecule. This acetyl group is responsible for the inactivation of cyclo-oxygenase via acetylation.


Absorption:   In general, immediate release aspirin is well and completely absorbed from the gastrointestinal (GI) tract. Following absorption, aspirin is hydrolyzed to salicylic acid with peak plasma levels of salicylic acid occurring within 1-2 hours of dosing (see Pharmacokinetics --Metabolism). The rate of absorption from the GI tract is dependent upon the dosage form, the presence or absence of food, gastric pH (the presence or absence of GI antacids or buffering agents), and other physiologic factors. Enteric coated aspirin products are erratically absorbed from the GI tract.

Distribution:   Salicylic acid is widely distibuted to all tissues and fluids in the body including the central nervous system (CNS), breast milk, and fetal tissues. The highest concentrations are found in the plasma, liver, renal cortex, heart, and lungs. The protein binding of salicylate is concentration-dependent, i.e., non-linear. At low concentrations (< 100 mcg/mL) approximately 90 percent of plasma salicylate is bound to albumin while at higher concentrations (> 400 mcg/mL), only about 75 percent is bound. The early signs of salicylic overdose (salicylism), including tinnitus (ringing in the ears), occur at plasma concentrations approximating 200 mcg/mL. Severe toxic effects are associated with levels > 400 mcg/mL (See Adverse Reactions and Overdosage.)

Metabolism:   Aspirin is rapidly hydrolyzed in the plasma to salicylic acid such that plasma levels of aspirin are essentially undetectable 1-2 hours after dosing. Salicylic acid is primarily conjugated in the liver to form salicyluric acid, a phenolic glucuronide, an acyl glucuronide, and a number of minor metabolites. Salicylic acid has a plasma half-life of approximately 6 hours. Salicylate metabolism is saturable and total body clearance decreases at higher serum concentrations due to the limited ability of the liver to form both salicyluric acid and phenolic glucuronide. Following toxic doses (10-20 grams (g)), the plasma half-life may be increased to over 20 hours.

Elimination:   The elimination of salicylic acid follows zero order pharmacokinetics; (i.e., the rate of drug elimination is constant in relation to plasma concentration). Renal excretion of unchanged drug depends upon urine pH. As urinary pH rises above 6.5, the renal clearance of free salicylate increases from < 5 percent to > 80 percent. Alkalinization of the urine is a key concept in the management of salicylate overdose. (See Overdosage.) Following therapeutic doses, approximately 10 percent is found excreted in the urine as salicylic acid, 75 percent as salicyluric acid, and 10 percent phenolic and 5 percent acyl glucoronides of salicylic acid.

Pharmacodynamics:   Aspirin affects platelet aggregation by irreversibly inhibiting prostaglandin cyclo-oxygenase. This effect lasts for the life of the platelet and prevents the formation of the platelet aggregating factor thromboxane A2. Non-acetylated salicylates do not inhibit this enzyme and have no effect on platelet aggregation. At somewhat higher doses, aspirin reversibly inhibits the formation of prostaglandin 12(prostacyclin), which is an arterial vasodilator and inhibits platelet aggregation.

At higher doses aspirin is an effective anti-inflammatory agent, partially due to inhibition of inflammatory mediators via cyclooxygenase inhibition in peripheral tissues. In vitro studies suggest that other mediators of inflammation may also be suppressed by aspirin administration, although the precise mechanism of action has not been elucidated. It is this non-specific suppression of cyclooxygenase activity in peripheral tissues following large doses that leads to its primary side effect of gastric irritation. (See Adverse Reactions.)


Ischemic Stroke and Transient Ischemic Attack (TIA):   In clinical trials of subjects with TIA's due to fibrin platelet emboli or ischemic stroke, aspirin has been shown to significantly reduce the risk of the combined endpoint of stroke or death and the combined endpoint of TIA, stroke, or death by about 13-18 percent.

Suspect Acute Myocardial Infarction (MI):   In a large, multi-center study of aspirin, streptokinase, and the combination of aspirin and streptokinase in 17,187 patients with suspected acute MI, aspirin treatment produced a 23-percent reduction in the risk of vascular mortality. Aspirin was also shown to have an additional benefit in patients given a thrombolytic agent.

Prevention of Recurrent MI and Unstable Angina Pectoris: These indications are supported by the results of six large, randomized, multi-center, placebo-controlled trials of predominantly male post-MI subjects and one randomized placebo-controlled study of men with unstable angina pectoris. Aspirin therapy in MI subjects was associated with a significant reduction (about 20 percent) in the risk of the combination endpoint of subsequent death and/or nonfatal reinfarction in these patients. In aspirin-treated unstable angina patients the event rate was reduced to 5 percent from the 10 percent rate in the placebo group.

Chronic Stable Angina Pectoris:   In a randomized, multi-center, double-blind trial designed to assess the role of aspirin for prevention of MI in patients with chronic stable angina pectoris, aspirin significantly reduced the primary combined endpoint of nonfatal MI, fatal MI, and sudden death by 34 percent. The secondary endpoint for vascular events (first occurrence of MI, stroke, or vascular death) was also significantly reduced (32 percent).

Revascularization Procedures:   Most patients who undergo coronary artery revascularization procedures have already had symptomatic coronary artery disease for which aspirin is indicated. Similarly, patients with lesions of the carotid bifurcation sufficient to require carotid endarterectomy are likely to have had a precedent event. Aspirin is recommended for patients who undergo revascularization procedures if there is a preexisting condition for which aspirin is already indicated.

Rheumatologic Diseases:   In clinical studies in patients with rheumatoid arthritis, juvenile rheumatoid arthritis, ankylosing spondylitis and osteoarthritis, aspirin has been shown to be effective in controlling various indices of clinical disease activity.


The acute oral 50 percent lethal dose in rats is about 1.5 g/kg and in mice 1.1 g/kg. Renal papillary necrosis and decreased urinary concentrating ability occur in rodents chronically administered high doses. Dose-dependent gastric mucosal injury occurs in rats and humans. Mammals may develop aspirin toxicosis associated with GI symptoms, circulatory effects, and central nervous system depression. (See Overdosage.)

-- advertisement -- The American Red Cross
Home | About Us | Contact Us | Site usage policy | Privacy policy

All Rights reserved - Copyright DrugLib.com, 2006-2017