DrugLib.com — Drug Information Portal

Rx drug information, pharmaceutical research, clinical trials, news, and more

Jantoven (Warfarin Sodium) - Description and Clinical Pharmacology

 
 



RECENT MAJOR CHANGES

Contraindications (4) 10/2011

Warnings and Precautions, Use in Pregnant Women with Mechanical Heart Valves (5.5) 10/2011

 

DESCRIPTION

JANTOVEN (Warfarin Sodium Tablets, USP) is an anticoagulant that acts by inhibiting vitamin K-dependent coagulation factors. Chemically, it is 3-(α-acetonylbenzyl)-4-hydroxycoumarin and is a racemic mixture of the R- and S-enantiomers. Crystalline warfarin sodium is an isopropanol clathrate. Its empirical formula is C19H15NaO4, and its structural formula is represented by the following:

Crystalline warfarin sodium occurs as a white, odorless, crystalline powder that is discolored by light. It is very soluble in water, freely soluble in alcohol, and very slightly soluble in chloroform and ether.

JANTOVEN tablets for oral use contain: 1 mg, 2 mg, 2½ mg, 3 mg, 4 mg, 5 mg, 6 mg, 7½ mg or 10 mg of crystalline warfarin sodium, USP. They also contain:

All strengths: Lactose monohydrate, magnesium stearate, povidone, and pregelatinized starch (corn).
1 mg: FD&C Red #40 Aluminum Lake
2 mg: FD&C Blue #2 Aluminum Lake and FD&C Red #40 Aluminum Lake
2½ mg: D&C Yellow #10 Aluminum Lake and FD&C Blue #1 Aluminum Lake
3 mg: Brown #75 Synthetic Brown Iron Oxide
4 mg: FD&C Blue #1 Aluminum Lake
5 mg: FD&C Yellow #6 Aluminum Lake
6 mg: Yellow #10 Synthetic Yellow Iron Oxide, Black #85 Synthetic Black Iron Oxide and FD&C Blue #1 Aluminum Lake
7½ mg: D&C Yellow #10 Aluminum Lake and FD&C Yellow #6 Aluminum Lake
10 mg: Dye Free

CLINICAL PHARMACOLOGY

Warfarin acts by inhibiting the synthesis of vitamin K-dependent clotting factors, which include Factors II, VII, IX, and X, and the anticoagulant proteins C and S. Vitamin K is an essential cofactor for the post ribosomal synthesis of the vitamin K-dependent clotting factors. Vitamin K promotes the biosynthesis of γ-carboxyglutamic acid residues in the proteins that are essential for biological activity. Warfarin is thought to interfere with clotting factor synthesis by inhibition of the C1 subunit of vitamin K epoxide reductase (VKORC1) enzyme complex, thereby reducing the regeneration of vitamin K1 epoxide [see Clinical Pharmacology (12.5) ].

 

An anticoagulation effect generally occurs within 24 hours after warfarin administration. However, peak anticoagulant effect may be delayed 72 to 96 hours. The duration of action of a single dose of racemic warfarin is 2 to 5 days. The effects of JANTOVEN may become more pronounced as effects of daily maintenance doses overlap. This is consistent with the half-lives of the affected vitamin K-dependent clotting factors and anticoagulation proteins: Factor II - 60 hours, VII - 4 to 6 hours, IX - 24 hours, X - 48 to 72 hours, and proteins C and S are approximately 8 hours and 30 hours, respectively.

 

JANTOVEN is a racemic mixture of the R- and S-enantiomers of warfarin. The S-enantiomer exhibits 2 to 5 times more anticoagulant activity than the R-enantiomer in humans, but generally has a more rapid clearance.

 

Absorption

Warfarin is essentially completely absorbed after oral administration, with peak concentration generally attained within the first 4 hours.

 

Distribution

Warfarin distributes into a relatively small apparent volume of distribution of about 0.14 L/kg. A distribution phase lasting 6 to 12 hours is distinguishable after rapid intravenous or oral administration of an aqueous solution. Approximately 99% of the drug is bound to plasma proteins.

 

Metabolism

The elimination of warfarin is almost entirely by metabolism. Warfarin is stereoselectively metabolized by hepatic cytochrome P-450 (CYP450) microsomal enzymes to inactive hydroxylated metabolites (predominant route) and by reductases to reduced metabolites (warfarin alcohols) with minimal anticoagulant activity. Identified metabolites of warfarin include dehydrowarfarin, two diastereoisomer alcohols, and 4′-, 6-, 7-, 8-, and 10hydroxywarfarin. The CYP450 isozymes involved in the metabolism of warfarin include CYP2C9, 2C19, 2C8, 2C18, 1A2, and 3A4. CYP2C9, a polymorphic enzyme, is likely to be the principal form of human liver CYP450 that modulates the in vivo anticoagulant activity of warfarin. Patients with one or more variant CYP2C9 alleles have decreased S-warfarin clearance [see Clinical Pharmacology (12.5) ].

 

Excretion

The terminal half-life of warfarin after a single dose is approximately 1 week; however, the effective half-life ranges from 20 to 60 hours, with a mean of about 40 hours. The clearance of R-warfarin is generally half that of S-warfarin, thus as the volumes of distribution are similar, the half-life of R-warfarin is longer than that of S-warfarin. The half-life of R-warfarin ranges from 37 to 89 hours, while that of S-warfarin ranges from 21 to 43 hours. Studies with radiolabeled drug have demonstrated that up to 92% of the orally administered dose is recovered in urine. Very little warfarin is excreted unchanged in urine. Urinary excretion is in the form of metabolites.

 

Geriatric Patients

Patients 60 years or older appear to exhibit greater than expected INR response to the anticoagulant effects of warfarin. The cause of the increased sensitivity to the anticoagulant effects of warfarin in this age group is unknown but may be due to a combination of pharmacokinetic and pharmacodynamic factors. Limited information suggests there is no difference in the clearance of S-warfarin; however, there may be a slight decrease in the clearance of R-warfarin in the elderly as compared to the young. Therefore, as patient age increases, a lower dose of warfarin is usually required to produce a therapeutic level of anticoagulation [see Dosage and Administration (2.3, 2.4) ].

 

Asian Patients

Asian patients may require lower initiation and maintenance doses of warfarin. A non-controlled study of 151 Chinese outpatients stabilized on warfarin for various indications reported a mean daily warfarin requirement of 3.3 ± 1.4 mg to achieve an INR of 2 to 2.5. Patient age was the most important determinant of warfarin requirement in these patients, with a progressively lower warfarin requirement with increasing age.

 

CYP2C9 and VKORC1 Polymorphisms

The S-enantiomer of warfarin is mainly metabolized to 7-hydroxywarfarin by CYP2C9, a polymorphic enzyme. The variant alleles, CYP2C9*2 and CYP2C9*3, result in decreased in vitro CYP2C9 enzymatic 7-hydroxylation of S-warfarin. The frequencies of these alleles in Caucasians are approximately 11% and 7% for CYP2C9*2 and CYP2C9*3, respectively.

Other CYP2C9 alleles associated with reduced enzymatic activity occur at lower frequencies, including *5, *6, and *11 alleles in populations of African ancestry and *5, *9, and *11 alleles in Caucasians.

Warfarin reduces the regeneration of vitamin K from vitamin K epoxide in the vitamin K cycle through inhibition of VKOR, a multiprotein enzyme complex. Certain single nucleotide polymorphisms in the VKORC1 gene (e.g., –1639G>A) have been associated with variable warfarin dose requirements. VKORC1 and CYP2C9 gene variants generally explain the largest proportion of known variability in warfarin dose requirements.

CYP2C9 and VKORC1 genotype information, when available, can assist in selection of the initial dose of warfarin [see Dosage and Administration (2.3) ].

 

NONCLINICAL TOXICOLOGY

Carcinogenicity, mutagenicity, or fertility studies have not been performed with warfarin.

 

CLINICAL STUDIES

In five prospective, randomized, controlled clinical trials involving 3711 patients with non-rheumatic AF, warfarin significantly reduced the risk of systemic thromboembolism including stroke (see Table 4). The risk reduction ranged from 60% to 86% in all except one trial (CAFA: 45%), which was stopped early due to published positive results from two of these trials. The incidence of major bleeding in these trials ranged from 0.6% to 2.7% (see Table 4).

Table 4: Clinical Studies of Warfarin in Non-Rheumatic AF Patients *
N Thromboembolism % Major Bleeding
Study Warfarin-
Treated
Patients
Control
Patients
PT Ratio INR % Risk
Reduction
p-value Warfarin-
Treated
Patients
Control
Patients
AFASAK 335 336 1.5-2.0 2.8-4.2 60 0.027 0.6 0.0
SPAF 210 211 1.3-1.8 2.0-4.5 67 0.01 1.9 1.9
BAATAF 212 208 1.2-1.5 1.5-2.7 86 <0.05 0.9 0.5
CAFA 187 191 1.3-1.6 2.0-3.0 45 0.25 2.7 0.5
SPINAF 260 265 1.2-1.5 1.4-2.8 79 0.001 2.3 1.5
All study results of warfarin vs. control are based on intention-to-treat analysis and include ischemic stroke and systemic thromboembolism, excluding hemorrhagic stroke and transient ischemic attacks.

Trials in patients with both AF and mitral stenosis suggest a benefit from anticoagulation with warfarin sodium [see Dosage and Administration (2.2) ].

 

In a prospective, randomized, open-label, positive-controlled study in 254 patients with mechanical prosthetic heart valves, the thromboembolic-free interval was found to be significantly greater in patients treated with warfarin alone compared with dipyridamole/aspirintreated patients (p<0.005) and pentoxifylline/aspirin-treated patients (p<0.05). The results of this study are presented in Table 5.

Table 5: Prospective, Randomized, Open-Label, Positive-Controlled Clinical Study of Warfarin in Patients with Mechanical Prosthetic Heart Valves
Patients Treated With
Event Warfarin Dipyridamole/Aspirin Pentoxifylline/Aspirin
Thromboembolism 2.2/100 py 8.6/100 py 7.9/100 py
Major Bleeding 2.5/100 py 0.0/100 py 0.9/100 py

In a prospective, open-label, clinical study comparing moderate (INR 2.65) vs. high intensity (INR 9.0) warfarin therapies in 258 patients with mechanical prosthetic heart valves, thromboembolism occurred with similar frequency in the two groups (4.0 and 3.7 events per 100 patient years, respectively). Major bleeding was more common in the high intensity group. The results of this study are presented in Table 6.

Table 6: Prospective, Open-Label Clinical Study of Warfarin in Patients with Mechanical Prosthetic Heart Valves
Event Moderate Warfarin Therapy
INR 2.65
High Intensity Warfarin Therapy
INR 9.0
Thromboembolism 4.0/100 py 3.7/100 py
Major Bleeding 0.95/100 py 2.1/100 py

In a randomized trial in 210 patients comparing two intensities of warfarin therapy (INR 2.0-2.25 vs. INR 2.5-4.0) for a three-month period following tissue heart valve replacement, thromboembolism occurred with similar frequency in the two groups (major embolic events 2.0% vs. 1.9%, respectively, and minor embolic events 10.8% vs. 10.2%, respectively). Major hemorrhages occurred in 4.6% of patients in the higher intensity INR group compared to zero in the lower intensity INR group.

 

WARIS (The Warfarin Re-Infarction Study) was a double-blind, randomized study of 1214 patients 2 to 4 weeks post-infarction treated with warfarin to a target INR of 2.8 to 4.8. The primary endpoint was a composite of total mortality and recurrent infarction. A secondary endpoint of cerebrovascular events was assessed. Mean follow-up of the patients was 37 months. The results for each endpoint separately, including an analysis of vascular death, are provided in Table 7:

Table 7: WARIS - Endpoint Analysis of Separate Events
Event Warfarin
(N=607)
Placebo
(N=607)
RR (95% CI) % Risk Reduction
(p-value)
Total Patient Years of Follow-up 2018 1944
Total Mortality 94 (4.7/100 py) 123 (6.3/100 py) 0.76 (0.60, 0.97) 24 (p=0.030)
  Vascular Death 82 (4.1/100 py) 105 (5.4/100 py) 0.78 (0.60, 1.02) 22 (p=0.068)
Recurrent MI 82 (4.1/100 py) 124 (6.4/100 py) 0.66 (0.51, 0.85) 34 (p=0.001)
Cerebrovascular Event 20 (1.0/100 py) 44 (2.3/100 py) 0.46 (0.28, 0.75) 54 (p=0.002)

WARIS II (The Warfarin, Aspirin, Re-Infarction Study) was an open-label, randomized study of 3630 patients hospitalized for acute myocardial infarction treated with warfarin to a target INR 2.8 to 4.2, aspirin 160 mg per day, or warfarin to a target INR 2.0 to 2.5 plus aspirin 75 mg per day prior to hospital discharge. The primary endpoint was a composite of death, nonfatal reinfarction, or thromboembolic stroke. The mean duration of observation was approximately 4 years. The results for WARIS II are provided in the Table 8.

Table 8: WARIS II - Distribution of Events According to Treatment Group
Event Aspirin
(N=1206)
Warfarin
(N=1216)
Aspirin plus
Warfarin
(N=1208)
Rate Ratio
(95% CI)
p-value
No. of Events
Major Bleeding * 8 33 28 3.35 † (ND)
4.00 ‡ (ND)
ND
ND
Minor Bleeding § 39 103 133 3.21 (ND)
2.55 (ND)
ND
ND
Composite Endpoints ¶ 241 203 181 0.81 (0.69-0.95)
0.71 (0.60-0.83)
0.03
0.001
  Reinfarction 117 90 69 0.56 (0.41-0.78)
0.74 (0.55-0.98)
<0.001
0.03
  Thromboembolic Stroke 32 17 17 0.52 (0.28-0.98)
0.52 (0.28-0.97)
0.03
0.03
  Death 92 96 95 0.82
[Major bleeding episodes were defined as nonfatal cerebral hemorrhage or bleeding necessitating surgical intervention or blood transfusion.] [The rate ratio is for aspirin plus warfarin as compared with aspirin.] [The rate ratio is for warfarin as compared with aspirin.] [Minor bleeding episodes were defined as non-cerebral hemorrhage not necessitating surgical intervention or blood transfusion.] Includes death, nonfatal reinfarction, and thromboembolic cerebral stroke.

There were approximately four times as many major bleeding episodes in the two groups receiving warfarin than in the group receiving aspirin alone. Major bleeding episodes were not more frequent among patients receiving aspirin plus warfarin than among those receiving warfarin alone, but the incidence of minor bleeding episodes was higher in the combined therapy group.

 

-- advertisement -- The American Red Cross
 
Home | About Us | Contact Us | Site usage policy | Privacy policy

All Rights reserved - Copyright DrugLib.com, 2006-2017