DrugLib.com — Drug Information Portal

Rx drug information, pharmaceutical research, clinical trials, news, and more

Kantrex (Kanamycin Sulfate) - Summary



Patients treated with aminoglycosides by any route should be under close clinical observation because of the potential toxicity associated with their use. As with other aminoglycosides, the major toxic effects of kanamycin sulfate are its action on the auditory and vestibular branches of the eighth nerve and the renal tubules. Neurotoxicity is manifested by bilateral auditory toxicity which often is permanent and, sometimes, by vestibular ototoxicity. Loss of high frequency perception usually occurs before there is noticeable clinical hearing loss and can be detected by audiometric testing. There may not be clinical symptoms to warn of developing cochlear damage. Vertigo may occur and may be evidence of vestibular injury. Other manifestations of neurotoxicity may include numbness, skin tingling, muscle twitching, and convulsions. The risk of hearing loss increases with the degree of exposure to either high peak or high trough serum concentrations and continues to progress after drug withdrawal.

Renal impairment may be characterized by decreased creatinine clearance, the presence of cells or casts, oliguria, proteinuria, decreased urine specific gravity, or evidence of increasing nitrogen retention (increasing BUN, NPN, or serum creatinine).

The risks of severe ototoxic and nephrotoxic reactions are sharply increased in patients with impaired renal function and in those with normal renal function who receive high doses or prolonged therapy.

Renal and eighth nerve function should be closely monitored, especially in patients with known or suspected reduced renal function at the onset of therapy, and also in those whose renal function is initially normal but who develop signs of renal dysfunction during therapy. Serum concentrations of parenterally administered aminoglycosides should be monitored when feasible to assure adequate levels and to avoid potentially toxic levels. Urine should be examined for decreased specific gravity, increased excretion of protein and the presence of cells or casts. Blood urea nitrogen, serum creatinine, or creatinine clearance should be measured periodically. Serial audiograms should be obtained when feasible in patients old enough to be tested, particularly high risk patients. Evidence of ototoxicity (dizziness, vertigo, tinnitus, roaring in the ears, and hearing loss) or nephrotoxicity requires dosage adjustment or discontinuance of the drug.

Neuromuscular blockade with respiratory paralysis may occur when kanamycin sulfate is instilled intraperitoneally concomitantly with anesthesia and muscle-relaxing drugs. Neuromuscular blockade has been reported following parenteral injection and the oral use of aminoglycosides. The possibility of the occurrence of neuromuscular blockade and respiratory paralysis should be considered if aminoglycosides are administered by any route, especially in patients receiving anesthetics, neuromuscular-blocking agents such as tubocurarine, succinylcholine, decamethonium, or in patients receiving massive transfusions of citrate-anticoagulated blood. If blockage occurs, calcium salts may reduce these phenomena but mechanical respiratory assistance may be necessary.

The concurrent and/or sequential systemic, oral, or topical use of kanamycin and other potentially nephrotoxic, and/or neurotoxic drugs, particularly polymyxin B, bacitracin, colistin, amphotericin B, cisplatin, vancomycin, and all other aminoglycosides (including paromomycin) should be avoided because the toxicity may be additive. Other factors which may increase patient risk of toxicity are advanced age and dehydration.

Kanamycin sulfate should not be given concurrently with potent diuretics (ethacrynic acid, furosemide, meralluride sodium, sodium mercaptomerin, or mannitol). Some diuretics themselves cause ototoxicity, and intravenously administered diuretics may enhance aminoglycoside toxicity by altering antibiotic concentrations in serum and tissue.



(Kanamycin Injection, USP)
1 g per 3 mL

Kanamycin sulfate is an aminoglycoside antibiotic produced by Streptomyces kanamyceticus. It is C18H36N4O11• 2H2SO4.D-Streptamine, O-3-amino-3-deoxy-α-D-glucopyranosyl • (1→6)-O- [6-amino-6-deoxy-α-D-glucopyranosyl- (1→4)]-2-deoxy, sulfate 1:2 (salt). It consists of two amino sugars glycosidically linked to deoxystreptamine.

Kanamycin is indicated in the short term treatment of serious infections caused by susceptible strains of the designated microorganisms below. Bacteriological studies to identify the causative organisms and to determine their susceptibility to kanamycin should be performed. Therapy may be instituted prior to obtaining the results of susceptibility testing.

Kanamycin may be considered as initial therapy in the treatment of infections where one or more of the following are the known or suspected pathogens: E. coli, Proteus species (both indole-positive and indole-negative), Enterobacter aerogenes, Klebsiella pneumoniae, Serratia marcescens, Acinetobacter species. The decision to continue therapy with the drug should be based on results of the susceptibility tests, the response of the infection to therapy, and the important additional concepts contained in the WARNING box above.

In serious infections when the causative organisms are unknown, KANTREX may be administered as initial therapy in conjunction with a penicillin- or cephalosporin-type drug before obtaining results of susceptibility testing. If anaerobic organisms are suspected, consideration should be given to using other suitable antimicrobial therapy in conjunction with kanamycin.

Although kanamycin is not the drug of choice for staphylococcal infections, it may be indicated under certain conditions for the treatment of known or suspected staphylococcal disease. These situations include the initial therapy of severe infections where the organism is thought to be either a Gram-negative bacterium or a staphylococcus, infections due to susceptible strains of staphylococci in patients allergic to other antibiotics, and mixed staphylococcal/Gram-negative infections.

See all Kantrex indications & dosage >>


Published Studies Related to Kantrex (Kanamycin)

Effects of prolonged kanamycin administration on cochlear anatomy and auditory brainstem response thresholds in chickens. [2008.05]
OBJECTIVE: To determine whether regenerated hair cells in the basilar papilla of chickens are resistant to kanamycin monosulfate damage... CONCLUSION: The immature regenerated hair cells in the basilar papilla of chickens are resistant to kanamycin ototoxic effects; however, this resistance is not seen in mature hair cells following prolonged kanamycin exposure.

Topical kanamycin: an effective therapeutic option in aerobic vaginitis. [2006.08]
Eighty-one patients with clinical diagnosis of aerobic vaginitis (AV) were included in the study. The patients were randomized for treatment, 45 with kanamycin (100 mg vaginal ovules for 6 days, consecutively) and 36 with meclocycline (35 mg vaginal ovules for 6 days, consecutively)... In conclusion, our data suggest that the topical use of kanamycin could be considered a specific antibiotic for the therapy of this new pathology.

more studies >>

Clinical Trials Related to Kantrex (Kanamycin)

The Evaluation of a Standard Treatment Regimen of Anti-tuberculosis Drugs for Patients With MDR-TB [Not yet recruiting]
Tuberculosis (TB) is a common, infectious, bacterial disease that is spread when an infected person transmits their saliva through the air by coughing or sneezing. Despite the availability and effectiveness of affordable six-month treatments for tuberculosis (TB), the worldwide control of this disease is currently being impacted by the emergence of multidrug resistant TB (MDR-TB). MDR-TB refers to TB that is resistant to at least isoniazid and rifampicin. These are the two most powerful first-line drugs used to treat pulmonary TB. MDR-TB usually develops while a person is taking TB treatment due to either inappropriate treatment or failure of patients to comply with their treatment. This strain of drug-resistant bacteria can also be spread to other people through the air. MDR-TB leads to a considerable reduction in the effectiveness of standard short-length treatments and currently the standard treatments for MDR-TB can last as long as 24 months. With the incident rate of MDR-TB on the rise (511,000 new cases in 2007) and the lengthy duration of current treatments there is a need to investigate whether a shorter-length treatment using effective drugs is a global possibility. Three short course regimens of drugs will be evaluated alongside the World Health Organisation recommended 24 month regimen for the treatment of MDR-TB. A total of at least 1155 participants with MDR-TB will be recruited and followed for a total of 132 weeks.

Clinical Trial to Investigate the Pharmacokinetics of Second-Line Anti-Tuberculosis Agents [Completed]

Measurement of Anti-TB Drugs in Lung Tissue From Patients Having Surgery to Treat Tuberculosis [Completed]
This study, conducted jointly by researchers at the National Masan TB Hospital, Asan and Samsung Medical Centers in Seoul, Republic of Korea, and the Yonsei University and the NIH in the United States, will examine why some patients with tuberculosis (TB) develop disease that is harder to treat than most cases. TB is an infection of the lung that usually can be successfully treated with anti-TB drugs. However, some people get a more serious kind of disease (called multi-drug resistant TB or extensively drug-resistant TB) that is very difficult to treat and may not be cured by the regular medicines available. This study will try to find out if some of the common TB drugs are getting to the place where the TB bacteria are. It will also look at how current anti-TB drugs might be used more effectively and how better drugs might be developed. People 20 years of age and older with hard-to-treat TB who have elected to undergo surgical removal of part of their lung at the National Masan Tuberculosis Hospital, Masan, the Asan Medical Center, and the Samsung Medical Center, may be eligible for this study. Participants undergo the following procedures:

- Medical history and physical examination, including sputum sample.

- Blood tests at various times during the study.

- Drug administration. Subjects are given one dose each of five common TB drugs

rifampicin, isoniazid, pyrazinamide, kanamycin and moxifloxacin before they undergo surgery to remove part of their lung. After surgery, some of the lung tissue and fluid around the lungs that was removed during surgery will be examined to determine the regions where the TB bacteria live and analyze the lung tissue itself.

- Dynamic MRI (magnetic resonance imaging) scan. This type of scan uses a magnetic field

and radio waves to produce pictures of the lung. Subjects lie very still on a table inside the cylindrical scanner with their head on a soft cradle and their hands over their head. Several images are obtained for less than 5 minutes at a time.

Patients Response to Early Switch To Oral:Osteomyelitis Study [Not yet recruiting]
Based on the current literature, investigators hypothesize that patients with osteomyelitis who are treated with the standard approach of intravenous antibiotics for the full duration of therapy will have the same clinical outcomes as patients treated with the experimental approach of intravenous antibiotics with early switch to oral antibiotics. The primary objective of this study is to compare patients with osteomyelitis treated with the standard approach of intravenous antibiotics for the full duration of therapy versus patients treated with intravenous antibiotics with an early switch to oral antibiotics in relation to clinical outcomes at 12 months after discontinuation of antibiotic therapy. Secondary objectives of the study include the evaluation of adverse events related to the use of antibiotics as well as the cost of care evaluated from the hospital perspective.

Trial of Antibiotic Prophylaxis in Elective Laparoscopic Colorectal Surgery: Oral and Systemic Versus Systemic Antibiotics [Completed]

more trials >>

Page last updated: 2008-06-22

-- advertisement -- The American Red Cross
Home | About Us | Contact Us | Site usage policy | Privacy policy

All Rights reserved - Copyright DrugLib.com, 2006-2017