DrugLib.com — Drug Information Portal

Rx drug information, pharmaceutical research, clinical trials, news, and more

Prograf (Tacrolimus) - Drug Interactions, Contraindications, Overdosage, etc

 
 



DRUG INTERACTIONS

Since tacrolimus is metabolized mainly by CYP3A enzymes, drugs or substances known to inhibit these enzymes may increase tacrolimus whole blood concentrations. Drugs known to induce CYP3A enzymes may decrease tacrolimus whole blood concentrations [see Warnings and Precautions (5.13) and Clinical Pharmacology (12.3)]. Dose adjustments may be needed along with frequent monitoring of tacrolimus whole blood trough concentrations when Prograf is administered with CYP3A inhibitors or inducers. In addition, patients should be monitored for adverse reactions including changes in renal function and QT prolongation [see Warnings and Precautions and].

Mycophenolic Acid Products

With a given dose of mycophenolic acid (MPA) products, exposure to MPA is higher with Prograf co-administration than with cyclosporine co-administration because cyclosporine interrupts the enterohepatic recirculation of MPA while tacrolimus does not. Clinicians should be aware that there is also a potential for increased MPA exposure after crossover from cyclosporine to Prograf in patients concomitantly receiving MPA-containing products.

Grapefruit Juice

Grapefruit juice inhibits CYP3A-enzymes resulting in increased tacrolimus whole blood trough concentrations, and patients should avoid eating grapefruit or drinking grapefruit juice with tacrolimus [see Dosage and Administration ].

Protease Inhibitors

Most protease inhibitors inhibit CYP3A enzymes and may increase tacrolimus whole blood concentrations. It is recommended to avoid concomitant use of tacrolimus with nelfinavir unless the benefits outweigh the risks [see Clinical Pharmacology]. Whole blood concentrations of tacrolimus are markedly increased when co-administered with telaprevir or with boceprevir [see Clinical Pharmacology ]. Monitoring of tacrolimus whole blood concentrations and tacrolimus-associated adverse reactions, and appropriate adjustments in the dosing regimen of tacrolimus are recommended when tacrolimus and protease inhibitors (e.g., ritonavir, telaprevir, boceprevir) are used concomitantly.

Antifungal Agents

Frequent monitoring of whole blood concentrations and appropriate dosage adjustments of tacrolimus are recommended when concomitant use of the following antifungal drugs with tacrolimus is initiated or discontinued [see Clinical Pharmacology].

Azoles: Voriconazole, posaconazole, itraconazole, ketoconazole, fluconazole and clotrimazole inhibit CYP3A metabolism of tacrolimus and increase tacrolimus whole blood concentrations. When initiating therapy with voriconazole or posaconazole in patients already receiving tacrolimus, it is recommended that the tacrolimus dose be initially reduced to one-third of the original dose and the subsequent tacrolimus doses be adjusted based on the tacrolimus whole blood concentrations.

Caspofungin is an inducer of CYP3A and decreases whole blood concentrations of tacrolimus.

Calcium Channel Blockers

Verapamil, diltiazem, nifedipine, and nicardipine inhibit CYP3A metabolism of tacrolimus and may increase tacrolimus whole blood concentrations. Monitoring of whole blood concentrations and appropriate dosage adjustments of tacrolimus are recommended when these calcium channel blocking drugs and tacrolimus are used concomitantly.

Antibacterials

Erythromycin, clarithromycin, troleandomycin and chloramphenicol inhibit CYP3A metabolism of tacrolimus and may increase tacrolimus whole blood concentrations. Monitoring of blood concentrations and appropriate dosage adjustments of tacrolimus are recommended when these drugs and tacrolimus are used concomitantly.

Antimycobacterials

Rifampin [see Clinical Pharmacology ] and rifabutin are inducers of CYP3A enzymes and may decrease tacrolimus whole blood concentrations. Monitoring of whole blood concentrations and appropriate dosage adjustments of tacrolimus are recommended when these antimycobacterial drugs and tacrolimus are used concomitantly.

Anticonvulsants

Phenytoin, carbamazepine and phenobarbital induce CYP3A enzymes and may decrease tacrolimus whole blood concentrations. Monitoring of whole blood concentrations and appropriate dosage adjustments of tacrolimus are recommended when these drugs and tacrolimus are used concomitantly.

Concomitant administration of phenytoin with tacrolimus may also increase phenytoin plasma concentrations. Thus, frequent monitoring phenytoin plasma concentrations and adjusting the phenytoin dose as needed are recommended when tacrolimus and phenytoin are administered concomitantly.

St. John’s Wort (Hypericum perforatum)

St. John’s Wort induces CYP3A enzymes and may decrease tacrolimus whole blood concentrations. Monitoring of whole blood concentrations and appropriate dosage adjustments of tacrolimus are recommended when St. John’s Wort and tacrolimus are co-administered.

Gastric Acid Suppressors/Neutralizers

Lansoprazole and omeprazole, as CYP2C19 and CYP3A4 substrates, may potentially inhibit the CYP3A4 metabolism of tacrolimus and thereby substantially increase tacrolimus whole blood concentrations, especially in transplant patients who are intermediate or poor CYP2C19 metabolizers, as compared to those patients who are efficient CYP2C19 metabolizers.

Cimetidine may also inhibit the CYP3A4 metabolism of tacrolimus and thereby substantially increase tacrolimus whole blood concentrations.

Coadministration with magnesium and aluminum hydroxide antacids increase tacrolimus whole blood concentrations [see Clinical Pharmacology]. Monitoring of whole blood concentrations and appropriate dosage adjustments of tacrolimus are recommended when these drugs and tacrolimus are used concomitantly.

Others

Bromocriptine, nefazodone, metoclopramide, danazol, ethinyl estradiol, amiodarone and methylprednisolone may inhibit CYP3A metabolism of tacrolimus and increase tacrolimus whole blood concentrations. Monitoring of blood concentrations and appropriate dosage adjustments of tacrolimus are recommended when these drugs and tacrolimus are co-administered.

OVERDOSAGE

Limited overdosage experience is available. Acute overdosages of up to 30 times the intended dose have been reported. Almost all cases have been asymptomatic and all patients recovered with no sequelae. Acute overdosage was sometimes followed by adverse reactions consistent with those listed in Adverse Reactions (6) (including tremors, abnormal renal function, hypertension, and peripheral edema); in one case of acute overdosage, transient urticaria and lethargy were observed. Based on the poor aqueous solubility and extensive erythrocyte and plasma protein binding, it is anticipated that tacrolimus is not dialyzable to any significant extent; there is no experience with charcoal hemoperfusion. The oral use of activated charcoal has been reported in treating acute overdoses, but experience has not been sufficient to warrant recommending its use. General supportive measures and treatment of specific symptoms should be followed in all cases of overdosage.

In acute oral and IV toxicity studies, mortalities were seen at or above the following doses: in adult rats, 52 times the recommended human oral dose; in immature rats, 16 times the recommended oral dose; and in adult rats, 16 times the recommended human IV dose (all based on body surface area corrections).

CONTRAINDICATIONS

Prograf is contraindicated in patients with a hypersensitivity to tacrolimus. Prograf injection is contraindicated in patients with a hypersensitivity to HCO-60 (polyoxyl 60 hydrogenated castor oil). Hypersensitivity symptoms reported include dyspnea, rash, pruritus, and acute respiratory distress syndrome [see Adverse Reactions (6)].

-- advertisement -- The American Red Cross
 
Home | About Us | Contact Us | Site usage policy | Privacy policy

All Rights reserved - Copyright DrugLib.com, 2006-2017