DrugLib.com — Drug Information Portal

Rx drug information, pharmaceutical research, clinical trials, news, and more

Zosyn (Piperacillin / Tazobactam) - Warnings and Precautions

 
 



WARNINGS

SERIOUS AND OCCASIONALLY FATAL HYPERSENSITIVITY (ANAPHYLACTIC/ANAPHYLACTOID) REACTIONS (INCLUDING SHOCK) HAVE BEEN REPORTED IN PATIENTS RECEIVING THERAPY WITH PENICILLINS INCLUDING ZOSYN. THESE REACTIONS ARE MORE LIKELY TO OCCUR IN INDIVIDUALS WITH A HISTORY OF PENICILLIN HYPERSENSITIVITY OR A HISTORY OF SENSITIVITY TO MULTIPLE ALLERGENS. THERE HAVE BEEN REPORTS OF INDIVIDUALS WITH A HISTORY OF PENICILLIN HYPERSENSITIVITY WHO HAVE EXPERIENCED SEVERE REACTIONS WHEN TREATED WITH CEPHALOSPORINS. BEFORE INITIATING THERAPY WITH ZOSYN, CAREFUL INQUIRY SHOULD BE MADE CONCERNING PREVIOUS HYPERSENSITIVITY REACTIONS TO PENICILLINS, CEPHALOSPORINS, OR OTHER ALLERGENS. IF AN ALLERGIC REACTION OCCURS, ZOSYN SHOULD BE DISCONTINUED AND APPROPRIATE THERAPY INSTITUTED. SERIOUS ANAPHYLACTIC/ANAPHYLACTOID REACTIONS (INCLUDING SHOCK) REQUIRE IMMEDIATE EMERGENCY TREATMENT WITH EPINEPHRINE. OXYGEN, INTRAVENOUS STEROIDS, AND AIRWAY MANAGEMENT, INCLUDING INTUBATION, SHOULD ALSO BE ADMINISTERED AS INDICATED.

Clostridium difficile associated diarrhea (CDAD) has been reported with use of nearly all antibacterial agents, including ZOSYN, and may range in severity from mild diarrhea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon leading to overgrowth of C. difficile.

C. difficile produces toxins A and B which contribute to the development of CDAD. Hypertoxin producing strains of C. difficile cause increased morbidity and mortality, as these infections can be refractory to antimicrobial therapy and may require colectomy. CDAD must be considered in all patients who present with diarrhea following antibiotic use. Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial agents.

If CDAD is suspected or confirmed, ongoing antibiotic use not directed against C. difficile may need to be discontinued. Appropriate fluid and electrolyte management, protein supplementation, antibiotic treatment of C. difficile, and surgical evaluation should be instituted as clinically indicated.

Serious skin reactions, such as Stevens-Johnson syndrome and toxic epidermal necrolysis, have been reported in patients receiving ZOSYN (see ADVERSE REACTIONS). If patients develop a skin rash they should be monitored closely and ZOSYN discontinued if lesions progress.

PRECAUTIONS

General

Bleeding manifestations have occurred in some patients receiving β-lactam antibiotics, including piperacillin. These reactions have sometimes been associated with abnormalities of coagulation tests such as clotting time, platelet aggregation, and prothrombin time, and are more likely to occur in patients with renal failure. If bleeding manifestations occur, ZOSYN should be discontinued and appropriate therapy instituted.

The possibility of the emergence of resistant organisms that might cause superinfections should be kept in mind. If this occurs, appropriate measures should be taken.

As with other penicillins, patients may experience neuromuscular excitability or convulsions if higher than recommended doses are given intravenously (particularly in the presence of renal failure).

ZOSYN in Galaxy Containers contains a monosodium salt of piperacillin, a monosodium salt of tazobactam, and sodium from other formulation components. The approximate total sodium content for ZOSYN in Galaxy Containers is 5.58 mEq (128 mg) per 50 mL in the 2.25 g dose, 8.38 mEq (192 mg) per 50 mL in the 3.375 g dose, and 11.17 mEq (256 mg) per 100 mL in the 4.5 g dose. This should be considered when treating patients requiring restricted salt intake. Periodic electrolyte determinations should be performed in patients with low potassium reserves, and the possibility of hypokalemia should be kept in mind with patients who have potentially low potassium reserves and who are receiving cytotoxic therapy or diuretics. As with other semisynthetic penicillins, piperacillin therapy has been associated with an increased incidence of fever and rash in cystic fibrosis patients.

In patients with creatinine clearance ≤ 40 mL/min and dialysis patients (hemodialysis and CAPD), the intravenous dose should be adjusted to the degree of renal function impairment. (See DOSAGE AND ADMINISTRATION.)

Prescribing ZOSYN (piperacillin and tazobactam) in the absence of a proven or strongly suspected bacterial infection or a prophylactic indication is unlikely to provide benefit to the patient and increases the risk of development of drug-resistant bacteria.

Information for Patients

Patients should be counseled that antibacterial drugs, including ZOSYN, should only be used to treat bacterial infections. They do not treat viral infections (e.g., the common cold). When ZOSYN is prescribed to treat a bacterial infection, patients should be told that although it is common to feel better early in the course of therapy, the medication should be taken exactly as directed. Skipping doses or not completing the full course of therapy may (1) decrease the effectiveness of the immediate treatment and (2) increase the likelihood that bacteria will develop resistance and will not be treatable by ZOSYN or other antibacterial drugs in the future.

Diarrhea is a common problem caused by antibiotics which usually ends when the antibiotic is discontinued. Sometimes after starting treatment with antibiotics, patients can develop watery and bloody stools (with or without stomach cramps and fever) even as late as two or more months after having taken the last dose of the antibiotic. If this occurs, patients should contact their physician as soon as possible.

Laboratory Tests

Periodic assessment of hematopoietic function should be performed, especially with prolonged therapy, i.e., ≥ 21 days. (See ADVERSE REACTIONS, Adverse Laboratory Events.)

Drug Interactions

Aminoglycosides

The mixing of beta-lactam antibiotics with aminoglycosides in vitro can result in substantial inactivation of the aminoglycoside. However, amikacin and gentamicin have been shown to be compatible in vitro with reformulated ZOSYN containing EDTA supplied in vials or bulk pharmacy containers in certain diluents at specific concentrations for a simultaneous Y-site infusion. (See DOSAGE AND ADMINISTRATION.) Reformulated ZOSYN containing EDTA is not compatible with tobramycin for simultaneous coadministration via Y-site infusion.

The inactivation of aminoglycosides in the presence of penicillin-class drugs has been recognized. It has been postulated that penicillin-aminoglycoside complexes form; these complexes are microbiologically inactive and of unknown toxicity. Sequential administration of ZOSYN with tobramycin to patients with normal renal function and mild to moderate renal impairment has been shown to modestly decrease serum concentrations of tobramycin but does not significantly affect tobramycin pharmacokinetics. When aminoglycosides are administered in combination with piperacillin to patients with end-stage renal disease requiring hemodialysis, the concentrations of the aminoglycosides (especially tobramycin) may be significantly altered and should be monitored. Since aminoglycosides are not equally susceptible to inactivation by piperacillin, consideration should be given to the choice of the aminoglycoside when administered in combination with piperacillin to these patients.

Probenecid

Probenecid administered concomitantly with ZOSYN prolongs the half-life of piperacillin by 21% and of tazobactam by 71%.

Vancomycin

No pharmacokinetic interactions have been noted between ZOSYN and vancomycin.

Heparin

Coagulation parameters should be tested more frequently and monitored regularly during simultaneous administration of high doses of heparin, oral anticoagulants, or other drugs that may affect the blood coagulation system or the thrombocyte function.

Vecuronium

Piperacillin when used concomitantly with vecuronium has been implicated in the prolongation of the neuromuscular blockade of vecuronium. ZOSYN could produce the same phenomenon if given along with vecuronium. Due to their similar mechanism of action, it is expected that the neuromuscular blockade produced by any of the non-depolarizing muscle relaxants could be prolonged in the presence of piperacillin. (See package insert for vecuronium bromide.)

Methotrexate

Limited data suggests that coadministration of methotrexate and piperacillin may reduce the clearance of methotrexate due to competition for renal secretion. The impact of tazobactam on the elimination of methotrexate has not been evaluated. If concurrent therapy is necessary, serum concentrations of methotrexate as well as the signs and symptoms of methotrexate toxicity should be frequently monitored.

Drug/Laboratory Test Interactions

As with other penicillins, the administration of ZOSYN may result in a false-positive reaction for glucose in the urine using a copper-reduction method (CLINITEST®). It is recommended that glucose tests based on enzymatic glucose oxidase reactions (such as DIASTIX® or TES-TAPE) be used.

There have been reports of positive test results using the Bio-Rad Laboratories Platelia Aspergillus EIA test in patients receiving piperacillin/tazobactam injection who were subsequently found to be free of Aspergillus infection. Cross-reactions with non-Aspergillus polysaccharides and polyfuranoses with the Bio-Rad Laboratories Platelia Aspergillus EIA test have been reported.

Therefore, positive test results in patients receiving piperacillin/tazobactam should be interpreted cautiously and confirmed by other diagnostic methods.

Carcinogenesis, Mutagenesis, Impairment of Fertility

Long-term carcinogenicity studies in animals have not been conducted with piperacillin/tazobactam, piperacillin, or tazobactam.

Piperacillin/Tazobactam

Piperacillin/tazobactam was negative in microbial mutagenicity assays at concentrations up to 14.84/1.86 μg/plate. Piperacillin/tazobactam was negative in the unscheduled DNA synthesis (UDS) test at concentrations up to 5689/711 μg/mL. Piperacillin/tazobactam was negative in a mammalian point mutation (Chinese hamster ovary cell HPRT) assay at concentrations up to 8000/1000 μg/mL. Piperacillin/tazobactam was negative in a mammalian cell (BALB/c-3T3) transformation assay at concentrations up to 8/1 μg/mL. In vivo, piperacillin/tazobactam did not induce chromosomal aberrations in rats dosed I.V. with 1500/187.5 mg/kg; this dose is similar to the maximum recommended human daily dose on a body-surface-area basis (mg/m2).

Piperacillin

Piperacillin was negative in microbial mutagenicity assays at concentrations up to 50 μg/plate. There was no DNA damage in bacteria (Rec assay) exposed to piperacillin at concentrations up to 200 μg/disk. Piperacillin was negative in the UDS test at concentrations up to 10,000 μg/mL. In a mammalian point mutation (mouse lymphoma cells) assay, piperacillin was positive at concentrations ≥2500 μg/mL. Piperacillin was negative in a cell (BALB/c-3T3) transformation assay at concentrations up to 3000 μg/mL. In vivo, piperacillin did not induce chromosomal aberrations in mice at I.V. doses up to 2000 mg/kg/day or rats at I.V. doses up to 1500 mg/kg/day. These doses are half (mice) or similar (rats) to the maximum recommended human daily dose based on body-surface area (mg/m2). In another in vivo test, there was no dominant lethal effect when piperacillin was administered to rats at I.V. doses up to 2000 mg/kg/day, which is similar to the maximum recommended human daily dose based on body-surface area (mg/m2). When mice were administered piperacillin at I.V. doses up to 2000 mg/kg/day, which is half the maximum recommended human daily dose based on body-surface area (mg/m2), urine from these animals was not mutagenic when tested in a microbial mutagenicity assay. Bacteria injected into the peritoneal cavity of mice administered piperacillin at I.V. doses up to 2000 mg/kg/day did not show increased mutation frequencies.

Tazobactam

Tazobactam was negative in microbial mutagenicity assays at concentrations up to 333 μg/plate. Tazobactam was negative in the UDS test at concentrations up to 2000 μg/mL. Tazobactam was negative in a mammalian point mutation (Chinese hamster ovary cell HPRT) assay at concentrations up to 5000 μg/mL. In another mammalian point mutation (mouse lymphoma cells) assay, tazobactam was positive at concentrations ≥3000 μg/mL. Tazobactam was negative in a cell (BALB/c-3T3) transformation assay at concentrations up to 900 μg/mL. In an in vitro cytogenetics (Chinese hamster lung cells) assay, tazobactam was negative at concentrations up to 3000 μg/mL. In vivo, tazobactam did not induce chromosomal aberrations in rats at I.V. doses up to 5000 mg/kg, which is 23 times the maximum recommended human daily dose based on body-surface area (mg/m2).

Pregnancy

Teratogenic effects—Pregnancy Category B

Piperacillin/tazobactam

Reproduction studies have been performed in rats and have revealed no evidence of impaired fertility due to piperacillin/tazobactam administered up to a dose which is similar to the maximum recommended human daily dose based on body-surface area (mg/m2).

Teratology studies have been performed in mice and rats and have revealed no evidence of harm to the fetus due to piperacillin/tazobactam administered up to a dose which is 1 to 2 times and 2 to 3 times the human dose of piperacillin and tazobactam, respectively, based on body-surface area (mg/m2).

Piperacillin and tazobactam cross the placenta in humans.

Piperacillin

Reproduction and teratology studies have been performed in mice and rats and have revealed no evidence of impaired fertility or harm to the fetus due to piperacillin administered up to a dose which is half (mice) or similar (rats) to the maximum recommended human daily dose based on body-surface area (mg/m2).

Tazobactam

Reproduction studies have been performed in rats and have revealed no evidence of impaired fertility due to tazobactam administered at doses up to 3 times the maximum recommended human daily dose based on body-surface area (mg/m2).

Teratology studies have been performed in mice and rats and have revealed no evidence of harm to the fetus due to tazobactam administered at doses up to 6 and 14 times, respectively, the human dose based on body-surface area (mg/m2). In rats, tazobactam crosses the placenta. Concentrations in the fetus are less than or equal to 10% of those found in maternal plasma.

There are, however, no adequate and well-controlled studies with the piperacillin/tazobactam combination or with piperacillin or tazobactam alone in pregnant women. Because animal reproduction studies are not always predictive of the human response, this drug should be used during pregnancy only if clearly needed.

Nursing Mothers

Piperacillin is excreted in low concentrations in human milk; tazobactam concentrations in human milk have not been studied. Caution should be exercised when ZOSYN is administered to a nursing woman.

Pediatric Use

Use of ZOSYN in pediatric patients 2 months of age or older with appendicitis and/or peritonitis is supported by evidence from well-controlled studies and pharmacokinetic studies in adults and in pediatric patients. This includes a prospective, randomized, comparative, open-label clinical trial with 542 pediatric patients 2-12 years of age with complicated intra-abdominal infections, in which 273 pediatric patients received piperacillin/tazobactam. Safety and efficacy in pediatric patients less than 2 months of age have not been established (see CLINICAL PHARMACOLOGY and DOSAGE AND ADMINISTRATION).

There are no dosage recommendations for ZOSYN in pediatric patients with impaired renal function.

Geriatric Use

Patients over 65 years are not at an increased risk of developing adverse effects solely because of age. However, dosage should be adjusted in the presence of renal insufficiency. (See DOSAGE AND ADMINISTRATION.)

In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy.

The approximate total sodium content for ZOSYN in Galaxy Containers is 5.58 mEq (128 mg) per 50 mL in the 2.25 g dose, 8.38 mEq (192 mg) per 50 mL in the 3.375 g dose, and 11.17 mEq (256 mg) per 100 mL in the 4.5 g dose. At the usual recommended doses, patients would receive approximately 790 to 1050 mg/day (33.5 to 44.6 mEq) of sodium. The geriatric population may respond with a blunted natriuresis to salt loading. This may be clinically important with regard to such diseases as congestive heart failure.

This drug is known to be substantially excreted by the kidney, and the risk of toxic reactions to this drug may be greater in patients with impaired renal function. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and it may be useful to monitor renal function.

Page last updated: 2013-07-15

-- advertisement -- The American Red Cross
 
Home | About Us | Contact Us | Site usage policy | Privacy policy

All Rights reserved - Copyright DrugLib.com, 2006-2017